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SUMMARY 
 
Usually, a hull form is represented by tensor-product spline surfaces. Due to the topological limitation of tensor-product 
splines to quadrilateral surfaces, hull forms are composed of several patches. This results in discontinuities of different 
order between neighboring patches. Indeed, this is known to be error-prone in practice. Furthermore, the quality of a hull 
surface measured in terms of fairness is limited due to discontinuities. Therefore, the goal of this work is to represent a 
hull form as single spline surface, which is the natural solution to avoid discontinuities.  
Initially, subdivision surfaces are introduced. This is another mathematical approach to define tensor-product splines, but 
it allows for a generalization of spline surfaces to arbitrary topology. Afterwards, the hull form of a typical container vessel 
is represented by a single, generalized spline surface. The surface is basically curvature continuous (G2) everywhere, which 
enables a high-quality representation of the hull form. 
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1. INTRODUCTION 
 
The hull form is probably the most important information 
about a ship design. In general, the quality of a hull form 
is measured in terms of fairness. This quality criterion 
requires curvature continuity as well as a minimal number 
of inflection points. Naturally, it is the designer's 
responsibility to minimize the number of inflection points, 
though this task might be assisted by some fairing 
algorithm. In contrast, curvature continuity is a property 
of the geometric representation of the hull form. 
Tensor-product spline surfaces are commonly used for 
hull form representation. In most cases cubic B-splines are 
employed. Indeed, a cubic B-spline offers the best trade-
off between a minimal degree and curvature continuity. 
Unfortunately, tensor-product splines are limited to 
quadrilateral surfaces. Accordingly, a hull form is 
composed of several patches, but this results in 
discontinuities of different order between neighboring 
patches. In the context of the quality assessment of a hull 
surface, discontinuities are the major source of quality 
defects. 
The worst case are discontinuities of zeroth order. In this 
case patches are disjoint and the hull form representation 
lacks any continuity across patch boundaries. Indeed, this 
does not only cause serious quality issues, but is also 
known to be error-prone in practice because disjoint 
patches limit the applicability of the hull form 
representation in downstream analysis methods. The 
possibility of disjoint patches may sound rather theoretical 
but they occur frequently in practice. Furthermore, 
substantial effort is required to prepare a hull form 
representation composed of disjoint patches for 
downstream applications, see for example the work of 
Bronsart et al. [1, 2, 3]. 
In contrast, high-order discontinuities essentially limit the 
quality of the hull surface representation. With respect to 
the quality criterion for hull forms, discontinuities of first 
and second order are of primary interest. Discontinuities 
of first order denote a lack of normal continuity across 

patch boundaries. Similarly, discontinuities of second 
order indicate a lack of curvature continuity across patch 
boundaries. Usually, a hull form representation is 
generated based on a network of curves. The network is 
interpolated with appropriate surface patches that join 
smoothly. Most algorithms obtain normal continuity 
across patch boundaries [4]. In contrast, curvature 
continuity is necessary to meet the quality requirements 
defined above. Recall that in practice often neither normal 
nor position continuity is obtained, but disjoint patches are 
a daily occurrence. 
Discontinuities between neighboring patches are 
identified as a major reason for quality defects of hull form 
representations based on tensor-product splines. Therefore 
the goal of this work is to represent a hull form as a single 
spline surface, which is the natural solution to avoid 
discontinuities. 
In fact, the limitation of tensor-product splines to 
quadrilateral surfaces causes the necessity to compose a 
hull form of several patches. To negotiate this limitation, 
attention has to be paid to its reason. The reason is that 
tensor-product splines are defined on regular control 
meshes. In order to address this limitation, a possibility to 
define spline surfaces on arbitrary topological control 
meshes is required. Naturally, this leads to the idea of 
subdivision surfaces. A certain class of subdivision 
surfaces originates from the idea to generate B-splines 
surfaces on control meshes of arbitrary topology. 
Certainly, the most important example is the subdivision 
algorithm of Catmull and Clark [5], which generalizes 
cubic B-spline surfaces. 
Subdivision surfaces have gained wide popularity in the 
field of animation movies. In this field they replaced 
tensor-product splines for the representation of complex 
objects. Nevertheless, in the field of engineering they are 
still rarely used for the representation of surfaces. This 
might originate from two complementary views on 
subdivision surfaces. On the one hand, subdivision is 
viewed as a refinement of a polyhedral mesh. This is 
satisfactory for rendering, but due to its discrete nature 
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unsatisfactory for engineering. Indispensable analytical 
properties, such as points on the surface, normals or 
curvature are not available exactly. On the other hand, 
subdivision surfaces can be viewed as spline surfaces with 
singularities at extraordinary knots. However, refinement 
allows to remove those singularities. This is the 
appropriate setup to evaluate analytical properties exactly 
and therefore suitable to meet engineering demands. This 
second approach to subdivision is still unusual, but 
recently featured in the monograph of Peters and Reif [6]. 
Subdivision surfaces are introduced in the first part of the 
article. The focus will be on the representation of B-spline 
surfaces based on subdivision. The mathematical details 
are minimized to a necessary extent, but the analytical 
nature of subdivision surfaces is emphasized. Afterwards, 
a subdivision algorithm that generalizes cubic B-spline 
surfaces is specified. Its application for the representation 
of a typical hull form is shown in the second part of the 
article. 
 
2. SURFACE REPRESENTATION 
 
2.1 SUBDIVISION SURFACES 
 
The subsequent material is a brief description of the 
spline-based approach to subdivision surfaces featured by 
Peters and Reif [6].  
A generalized spline surface is a continuous map 
𝐱𝐱: 𝐒𝐒 ⟶ ℝ3 (1) 

where 𝐒𝐒 denotes the spline domain. The domain is 
composed of a set of indexed cells 𝚺𝚺 = [0,1]2. Note that 
cells are simply unit squares in ℝ2. For visualization 
purposes, the spline domain is embedded into the plane, 
though this may require to distort individual cells. As an 
example, the embedding of a spline domain composed of 
five cells is shown in the left part of Figure 1. 

 
Figure 1: Embedding of a spline domain composed of five 
cells. The domain is divided by knots and knot lines. An 
extraordinary knot is highlighted in the center. Left: Initial 
domain. Right: Same domain after one step of refinement. 

In analogy to the classical spline theory, the edges are 
called knot lines and meet at points called knots. Similar 
to a tensor-product spline the domain is divided by knots 
and knot lines. In contrast, extraordinary knots with 𝑛𝑛 ≠ 4 
incident knot lines are allowed for generalized splines. An 
example of an extraordinary knot is highlighted in 
Figure 1. The restriction of the spline surface 𝐱𝐱 to a certain 
cell of its domain 
𝐱𝐱𝑖𝑖:𝚺𝚺 ∋ 𝛔𝛔 ⟼ 𝐱𝐱(𝛔𝛔, 𝑖𝑖) ∈ ℝ3 (2) 

is called a patch. Again, this is in compliance with the 
classical approach to spline surfaces, where complex 
surfaces are composed of several patches. However, those 
patches are now treated rigorously as a single surface, 
instead as a set of patches that might be interpreted as the 
representation of a single surface, but the patches are 
independent from a mathematical point of view. 
Next, an expression for 𝐱𝐱 that maps any composed domain 
to a continuous surface in ℝ3 is required. Unfortunately, 
no proper expression is known in the context of B-splines, 
though the restriction of 𝐱𝐱 to a patch 𝐱𝐱𝑖𝑖 can be easily 
defined in terms of tensor-product splines. For example: 

𝐱𝐱𝑖𝑖(𝑠𝑠, 𝑡𝑡) = ��𝑏𝑏𝑖𝑖3(𝑠𝑠)𝑏𝑏𝑗𝑗3(𝑡𝑡)𝐪𝐪𝑖𝑖𝑗𝑗 = 𝐵𝐵𝐐𝐐 ∈ ℝ3
4

𝑗𝑗=1

4

𝑖𝑖=1

 (3) 

is a cubic tensor-product B-spline surface on the unit 
square, where 𝑏𝑏𝑖𝑖3 and 𝑏𝑏𝑗𝑗3 are uniform cubic B-spline 
functions and 𝐪𝐪𝑖𝑖𝑗𝑗 is a regular grid of 4 × 4 control points. 
This example is illustrated in the left part of Figure 2. 

 
Figure 2: Connection of cubic spline patches with second-
order continuity. Left: A single patch and its control mesh. 
Right: Smooth connection of two patches. Curvature 
continuity is provided because both patches share a part of 
their control meshes. 

A simplified outline of the surface is shown in gray. The 
control mesh and the control points are shown in black. 
Furthermore, the right part of Figure 2 shows the 
connection of two patches with second order continuity. 
Apparently, second-order continuity is obtained because 
both patches share a proper set of control points. More 
patches could be connected, but the combined mesh would 
be always regular. Those composition of cubic patches to 
a smooth surface fits into the definition of a generalized 
spline, though irregular control meshes are disregarded. 
However, there is already an advantage over normal 
splines because the surface is not necessarily four-sided. 
Consider for example another patch on top of the dark gray 
patch in Figure 2. This would result in a L-shaped spline 
surface with six sides. 
The key to irregular control meshes is subdivision. This 
term refers to a splitting of the spline domain. Every cell 
of the domain is split into four cells as shown in Figure 1. 
Recall that always one patch corresponds to one cell. 
Hence, the number of patches increases and therefore the 
number of control points increases, too. Indeed, the 
growing number of control points characterizes the first 
view on subdivision as a control mesh refinement. To 
obtain a new set of control points, the rules of knot 
insertion are employed. Hence, neither the shape of the 
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surface nor continuity properties change due to domain 
refinement. Naturally, knot insertion applies only for 
regular meshes, but because new control points are linear 
combinations of old control points, these rules can be 
generalized for irregular meshes. At the first glance, one 
could choose any rules for extraordinary control points. In 
fact, the rules for those points are constrained by 
continuity requirements. 
Figure 3a shows a part of an irregular control mesh. For 
simplicity only a part of the mesh around the extraordinary 
point in the center is shown. The rest of the mesh is 
assumed to be regular. Therefore, the outer ring of patches 
is well defined in terms of cubic tensor-product splines. 
Furthermore, the patches are connected with second-order 
continuity because neighboring patches share control 
points as shown in Figure 2. In contrast, the inner patches 
do not possess any tensor-product representation due to 
the irregularity of the control mesh, see the control points 
highlighted in Figure 3a. One step of subdivision splits 
every patch into four patches and the control mesh is 
refined accordingly. This allows to add another ring of 
tensor-product splines in vicinity of the extraordinary 
point as shown in Figure 2b. It is easily verified that the 
new patches are connected with second-order continuity 
to its neighbors. A further step of subdivision adds a 
further ring of tensor-product splines, see Figure 3c. Thus, 
subdivision generates a growing tensor-product 
representation of the surface. Indeed, this is the 
appropriate setup to access analytical properties of a 
generalized spline exactly, even in the presence of 
extraordinary points. The next paragraph makes this 
approach to subdivision precise. 
Recall the matrix notation of single spline patch in 
equation (3). Furthermore, let 𝑚𝑚 denote the number of 
subdivision steps applied in the vicinity of the 
extraordinary point. Then 
𝐱𝐱𝑖𝑖𝑚𝑚 = 𝐵𝐵𝐐𝐐𝑖𝑖

𝑚𝑚 (4) 
is the 𝑖𝑖-th patch of the 𝑚𝑚-th ring, where 𝐵𝐵 contains the B-
spline functions and 𝐐𝐐𝑖𝑖

𝑚𝑚 contains the corresponding 
control points. Apparently,  𝐵𝐵 is invariant to subdivision, 
but 𝐐𝐐𝑖𝑖

𝑚𝑚 is a subset of the control mesh that changes every 

step. Next, all patches of the 𝑚𝑚-th ring are composed to 
single expression 
𝐱𝐱𝑚𝑚 = 𝐺𝐺𝐐𝐐𝑚𝑚 (5) 

where 𝐺𝐺 is called a system of generating rings and can be 
thought as an appropriate arrangement of B-spline 
functions that results from the composition of 𝐵𝐵. 
However, 𝐐𝐐𝑚𝑚 is still undefined. Recall that a new set of 
control points results from a simple linear combination of 
old control points that can be expressed in matrix notation. 
This allows to define, the control points of the 𝑚𝑚-th ring 
𝐐𝐐𝑚𝑚 = 𝐴𝐴𝑚𝑚𝐐𝐐 (6) 

directly in terms of the initial control points 𝐐𝐐. The 
coefficients of the linear combination are encoded in the 
subdivision matrix 𝐴𝐴. Now, the mathematical setting 
enables the analytical expression of every spline ring 
𝐱𝐱𝑚𝑚 = 𝐺𝐺𝐴𝐴𝑚𝑚𝐐𝐐 (7) 

in terms of the initial data 𝐐𝐐. Furthermore, the limit 
𝐱𝐱𝑐𝑐 = lim

𝑚𝑚→∞
𝐺𝐺𝐴𝐴𝑚𝑚𝐐𝐐 (8) 

defines the central point. 
In summary, subdivision generates a tensor-product 
representation of a generalized spline surface in the 
presence of extraordinary points. With equation (7) and 
equation (8) an expression to access those representation 
immediately in terms of the initial control mesh 𝐐𝐐 is given. 
In fact, this expression is only slightly more complex than 
the definition of tensor-product splines given in 
equation (3), but requires to exponentiate the matrix 𝐴𝐴. 
This can be done very efficiently, replacing 𝐴𝐴 with its 
spectral decomposition. 
The generalized spline surface inherits its continuity 
properties from the spline functions, except at 
extraordinary points. Recall, that in case of cubic B-spline 
functions all patches generated by subdivision are 
connected with second-order continuity. However, to 
analyze continuity properties at the central point is much 
more difficult. In fact, the major task to construct a 
subdivision surface is to define refinement rules for the 
extraordinary points that guarantee continuity at the 
central point. 

Figure 3: A generalized spline surface with an irregular control mesh. Patches incident to the extraordinary control point 
cannot be defined in terms of tensor-product splines. However, subdivision allows to add further rings of tensor-product 
spline patches in vicinity of the extraordinary point. 
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2.2 SUBDIVISION ALGORITHM 

Subdivision is a method to generate a tensor-product 
representation of a generalized spline surface in the 
vicinity of extraordinary knots. This method is put into 
operation by the tuple (𝐴𝐴,𝐺𝐺), which is called the 
subdivision algorithm. In fact, both components form a 
unit because 𝐴𝐴 results from the generalization of knot 
insertion of the spline functions that identify 𝐺𝐺. 
In this article, the subdivision algorithm of Catmull and 
Clark [5] is used. The algorithm is a generalization of knot 
insertion for uniform cubic tensor-product B-splines. In 
addition, the surface may contain creases and corners as 
features. This is realized with a subset of the extensions 
proposed by Biermann et al. [7]. In general, the surface is 
curvature continuous (G²) everywhere, but at 
extraordinary points it is only normal continuous (G¹). 
 
2.2 (a) Feature definition 
 
Features of the surface are defined based on tags applied 
to the control mesh. However, the choice of tags may be 
interdependent. 
Edge tags: Edges of the control mesh can be tagged to be 
smooth or crease. By default, edges are smooth, except for 
boundary edges that are always creases. 
Vertex tags: By default, vertices are smooth. Vertices 
incident to exactly two crease edges must be either tagged 
as a crease vertex or as a corner vertex. Vertices incident 
to a single crease edge are tagged as a dart vertex. Vertices 
incident to three or more crease edges are always tagged 
as corner vertices. 
 
2.2 (b) Control points 
 
Every subdivision step results in a new control mesh. 
Therefore, a new set of control points is computed. The 
presentation of the rules for new control points is based on 
the article of Biermann et al. [5], but all rules are 
generalized for non-quad meshes. However, these 
generalizations reproduce the original rules in case of a 
quad mesh. Furthermore, these rules include the original 
rules of Catmull and Clark [5]. 
Face points: For each face of the control mesh a new 
control point 

𝐟𝐟𝑖𝑖 =
1
𝑛𝑛
�𝐩𝐩𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (9) 

is computed as the average of the 𝑛𝑛 vertices 𝐩𝐩𝑖𝑖 defining 
the face. 
Edge points: For each smooth edge of the control mesh a 
new control point 

𝐞𝐞𝑖𝑖 = 𝑤𝑤1𝐩𝐩1 + 𝑤𝑤2𝐩𝐩2 +
1
4

(𝐟𝐟1 + 𝐟𝐟2) (10) 

is computed as the weighted average of the vertices 𝐩𝐩1 and 
𝐩𝐩2 defining the edge and the face points 𝐟𝐟1 and 𝐟𝐟2 of the 
two faces incident to the edge. The choice of weights 𝑤𝑤1 
and 𝑤𝑤2 depends on the tags of 𝐩𝐩1 and 𝐩𝐩2. 
If both vertices are (not) smooth the weights are simply 
𝑤𝑤1 = 𝑤𝑤2 = 1 4⁄ . If one vertex is smooth and the other 

vertex is not smooth, the weights are parametrized by 𝜃𝜃𝑘𝑘 
where 𝑘𝑘 is the number of faces in the sector of the edge. 
The notion of a sector is illustrated in Figure 4. 

 
Figure 4: Crease edges of the control mesh are shown in 
bold and divide the mesh around the central vertex into 
sectors. Left: The mesh is divided into a sector of two 
faces and a sector of three faces. Right: A single sector of 
five faces. 

Given the definition of a sector, the weight of the non-
smooth vertex is 

𝑤𝑤 =
1
2

cos2(𝜃𝜃𝑘𝑘) (11) 

and the weight of the smooth vertex is 

𝑤𝑤 =
1
2

sin2(𝜃𝜃𝑘𝑘) (12) 

with 𝜃𝜃𝑘𝑘 = 𝜋𝜋 (4𝑘𝑘)⁄  for a corner vertex, 𝜃𝜃𝑘𝑘 = 𝜋𝜋 (2𝑘𝑘)⁄  for a 
crease vertex and 𝜃𝜃𝑘𝑘 = 𝜋𝜋 𝑘𝑘⁄  for a dart vertex. The 
definition of 𝜃𝜃𝑘𝑘 for corner vertices is slightly modified in 
comparison to the original rules of Biermann et al. [7]. 
For each crease edge of the control mesh a new control 
point 

𝐞𝐞𝑖𝑖 =
1
2
𝐩𝐩1 +

1
2
𝐩𝐩2 (13) 

is computed as the average of the vertices 𝐩𝐩1 and 𝐩𝐩2 
defining the edge. 
Vertex points: The rule for a new vertex point depends 
on the tag of the vertex. For each smooth or dart vertex of 
the control mesh a new control point is defined by 

𝐯𝐯𝑖𝑖 =
1
𝑛𝑛
�𝐟𝐟𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+
1

2𝑛𝑛
�(𝐩𝐩𝑐𝑐 + 𝐩𝐩𝑖𝑖) +

𝑛𝑛 − 3
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

𝐩𝐩𝑐𝑐 (14) 

with 𝐟𝐟𝑖𝑖 are the face points of the faces incident to the 
vertex, 𝐩𝐩𝑖𝑖 are the surrounding vertices and 𝐩𝐩𝑐𝑐 is the 
position of the old vertex. For each crease vertex a new 
control point 

𝐯𝐯𝑖𝑖 =
1
8
𝐩𝐩1 +

3
4
𝐩𝐩𝑐𝑐 +

1
8
𝐩𝐩2 (15) 

is computed as the weighted average of the adjacent crease 
vertices 𝐩𝐩1, 𝐩𝐩2 and the position of the old vertex 𝐩𝐩𝑐𝑐. For 
each corner vertex a new control point is simply given by 
𝐯𝐯𝑖𝑖 = 𝐩𝐩𝑐𝑐. 
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2.2 (c) Subdivision matrix 
 
After the first step of subdivision all faces of the control 
mesh are quadrilateral. Furthermore, the local topology 
around any point of the control mesh does not change with 
further steps of subdivision. Indeed, this is the right setup 
to specify the subdivision matrix 𝐴𝐴 explicitly. Recall that 
𝐴𝐴 maps a set of control points 𝐐𝐐𝑚𝑚 that defines a ring of 
tensor-product patches 𝐱𝐱𝑚𝑚 in vicinity of some 
extraordinary point to a new set of control points 𝐐𝐐𝑚𝑚+1 
that defines a further ring of patches 𝐱𝐱𝑚𝑚+1. Naturally, the 
rules presented in section 2.2 (b) are used for this 
operation. Because those rules apply weighted averaging 
to obtain new control points, they can be rewritten in 
matrix notation 
𝐐𝐐𝑚𝑚+1 = 𝐴𝐴𝐐𝐐𝑚𝑚 (16) 

where every row of the subdivision matrix 𝐴𝐴 contains the 
weights of a single rule. The rows of 𝐴𝐴 are given in terms 
of the stencils shown in Figure 5. In contrast to the 
equations given in section 2.2 (b), the stencils are only 
valid for purely quad meshes. 
 
2.2 (d) Example 
 
The capabilities of the subdivision algorithm described in 
this section are illustrated in Figure 6. As an example, a 
five-sided surface is constructed. The control mesh of the 
surface is shown in the left part of Figure 6. In general, 
bold edges identify crease edges. As declared in 
section 2.2 (a), all boundary edges are required to be 
creases. In addition, one interior edge is tagged as a crease, 
too. Furthermore, the whole range of vertex tags is applied 
to the control mesh. Filled circles indicate corner vertices 
and empty circles denote crease vertices. The center vertex 
is a dart vertex because it is incident to a single crease 
edge. 
The corresponding surface of this control mesh is shown 
in the right part of Figure 6. Now, the tags can be discussed 
in terms of surface features. A chain of crease edges forms 
a control polygon of a cubic spline curve. This curve is 
interpolated by the surface. Thus, to require all boundary 
edges to be creases yields a behavior of the surface similar 
to tensor-product splines with open knots vectors. In 

addition, the corner vertices introduce cusps to the 
boundary curve. Again, this behavior is similar to the 
effect of multiple knots in classical spline theory. 
Naturally, the same characteristics apply for interior 
creases, but the surface is only position continuous (G0) at 
those curves. Finally, a dart vertex causes an interior 
crease to fade out smoothly, as shown in the center of 
Figure 6. 
Although this example is quite simple, it shows the full 
range of capabilities of the surface representation, most 
notably the definition of a multi-sided surface with an 
irregular control mesh. The boundary behavior of the 
surface is similar to that of open tensor-product splines. 
The definition of surface features is carried out with tags 
applied to the control mesh, rather than to modify knot 
vectors. 

 
Figure 6: A simple five-sided surface. Left: The control 
mesh with crease edges (bold edges), corner vertices 
(black circles), crease vertices (empty circles) and a dart 
vertex in the center. Right: The corresponding surface 
with an interior crease that fades out at the dart vertex. 

 
3. CASE STUDY 
 
In this section, the surface representation described in 
section 2.2 is employed to represent the hull form of a 
modern container vessel. The hull form of the Duisburg 
Test Case (DTC) is considered as reference. The reference 
character of this hull form is twofold. Firstly, its design 
represents the hull form of typical modern container 
vessels, see [8]. Therefore, the applicability of the surface 
representation proposed in this article is measured against 
actual industry demands. Secondly, the geometric 
representation of the DTC fits into the common practice 

Figure 5: Stencils for the subdivision algorithm. A stencil represents a row the subdivision matrix 𝐴𝐴 after the first step of 
subdivision. From left to right: Stencil of a face point (9), a smooth edge point (10), a smooth or dart vertex point (14), a 
crease edge (13) and a crease vertex (15). 
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for hull form representation. The hull form is provided as 
a set of cubic tensor-product B-spline patches, whereby an 
irregular network of curves is used for creation. In general, 
the patches meet with normal continuity, but in the 
forebody patches that meet only with position continuity 
are observed, too. However, the notion of continuity does 
not apply precisely, but within small tolerances. It is 
unclear whether this results from data exchange or is a 
deficiency of the method used for curve interpolation. 
The hull form representation of the DTC is shown in 
Figure 8. It includes a flat transom and is composed of 660 
patches. This number does not result from the topological 
limitation of tensor-product splines to quadrilateral 
surfaces, but from the complexity of the curve network 
used for surface generation. In general, it is possible to 
represent the hull form of typical container vessels with a 
smaller number of patches. In practice, at least a few tens 
of patches are required. Figure 9 shows the hull form of a 
container vessel represented based on subdivision 
surfaces. The hull form is similar to that of the DTC and 
is entirely represented with a single surface. In particular, 
this includes common features of the hull form such as the 
flat transom as shown in the right part of Figure 9. 
 
3.1 CONTROL MESH 
 
A chart of the control mesh used to define the hull form of 
a container vessel based on subdivision surfaces is shown 
in Figure 7. The control mesh consists of 117 control 
points. Most control points are organized in sections. 
Crease edges are used to separate certain regions of the 
hull form, namely the flat of side, the flat of bottom and 
the flat transom.  
 
3.1 (a) Bulbous bow 
 
The representation of a bulbous bow is challenging in case 
of tensor-product splines. From a geometric point of view, 
the bulbous bow is a two-sided surface, whereas tensor-
product splines are always four-sided. One solution is to 
compose the bulbous bow of multiple patches, whereby at 
least two patches are degenerated. An example of this 

solution is shown in Figure 8. In contrast, Figure 7 shows 
the representation of a bulbous bow based on an irregular 
control mesh. Two interior control points of valence three 
enable the typical shape of the bulbous bow. An 
extraordinary boundary control point of valence five is 
necessary to join it to the rest of the forebody. 
 
3.1 (b) Flat of side 
 
A chain of crease edges is used to define the flat of side as 
shown in Figure 7. In general, this yields a knuckle on the 
hull form. Though a knuckle is likely to be used as a flat 
of side above the design waterline, normal continuity is 
required in vicinity or below the design waterline. To force 
normal continuity, smooth edges incident to the flat of side 
are in the same plane. However, this does not force 
curvature continuity. At corners normal continuity is 
provided when all crease edges are in the same plane. For 
the corner vertex that joins the flat of side with the deck 
this criterion does not hold. Therefore, the flat of side is a 
knuckle close to the deck that fades out quickly as shown 
in Figure 9. 
 
3.1 (c) Flat of bottom 
 
The flat of bottom is realized similar to the flat of side. 
Again, crease edges are used for definition. In addition, 
normal continuity is forced at both corners. Hence, the flat 
of bottom is normal continuous everywhere. 
 
3.1 (d) Flat transom 
 
To incorporate the flat transom, crease edges are defined 
as shown in Figure 7. In contrast to the flat of side and flat 
of bottom, no normal continuity is forced. Therefore, the 
creases result in a knuckle as shown in Figure 9. 
  

Figure 7: Chart of the control mesh used to define the hull form of a modern container vessel. The mesh consists of 117 
control points. The boundary, the flat of side, the flat of bottom and the flat transom are modeled with crease edges (bold 
edges) in conjunction with crease vertices (empty circles) and corner vertices (black circles). All other vertices and edges 
are smooth. 
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Figure 8: Hull form representation of the Duisburg Test Case (DTC) based on tensor-product splines. It is composed of 
660 patches. Patch boundaries are schonw as black curves. 

Figure 9: Hull form of a modern container vessel represented by a subdivision surface. The hull form is entirely 
represented by a single surface and includes common features such as the flat transom. 

Figure 10: Reflection analysis of the DTC. The reflection lines show a lack of curvature continuity at patch boundaries. 
At some boundaries of the forebody, an additional lack of normal continuity is shown. 

Figure 11: Reflection analysis of the subdivision surface. The reflection lines indicate curvature continuity everywhere. 
However, the definition of features such as the flat transom or the flat of side enables intended discontinuities. 
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3.2 ANALYSIS 
 
Reflection lines are employed to analyze continuity 
properties. Curvature continuity is required for a high-
quality hull form representation. Therefore, the best case 
are smooth reflection lines. Second order discontinuities 
are shown with a kink in reflection lines. In this case, there 
is a lack of curvature continuity at the kink, but normals 
are continuous. First order discontinuities are shown with 
disjoint reflection lines. A lack of both, curvature and 
normal continuity, is shown at those points. 
 
3.2 (a) Global analysis 
 
Figure 10 shows the reflection analysis of the DTC. In 
general, the reflection lines denote a lack of curvature 
continuity at patch boundaries. Furthermore, a lack of 
normal continuity is observed in some regions of the 
forebody. Certainly, the angular errors of normals are 
small because the reflection lines are disjoint but close to 
each other. 
Figure 11 shows the reflection analysis of the subdivision 
surface. As expected, the reflection lines are smooth what 
denotes curvature continuity. The global pattern of the 
reflection lines agrees with the DTC. However, the 
absence of discontinuities avoids local oscillations of the 
reflection lines. 
 
3.2 (b) Local analysis 
 
To maintain continuity between adjacent tensor-product 
patches is particularly difficult in complex shaped regions 
of the hull form. As an example of a complex shaped 
region, Figure 12 shows a part of the bulbous bow. 

 
Figure 12: Reflection analysis of a part of the bulbous 
bow. Left: Reflection lines of the DTC show a serious lack 
of normal and curvature continuity across patch 
boundaries. Right: Reflection lines of the subdivision 
surface denote curvature continuity. The arrow points to 
an extraordinary point on the surface that causes a local 
distortion of the reflection lines. 

The representation based on tensor-product splines shows 
serious discontinuities between neighboring patches. 
Reflection lines have notable kinks or even do not match. 
Those quality defects cause a significant limitation of 
surface quality. In contrast, the reflection lines of the 
subdivision surface are smooth. However, extraordinary 
points are required to model this region. The arrow shown 
in Figure 12 points to an extraordinary point. It causes a 
local distortion of the reflection lines. This is a well-
known limitation of subdivision surfaces. 
 
 

4. CONCLUSIONS 
 
The impact of high-order discontinuities on the quality of 
a hull form representation seems to be negligible at the 
first glance. However, the comparison of the reflection 
lines of a hull form that merely lacks curvature continuity 
on the patch boundaries with its curvature continuous 
counterpart reveals a significant difference of quality. 
Indeed, this justifies to require curvature continuity for a 
high-quality hull form representation. In fact, this insight 
comes as no surprise because the well-established fairing 
of ship lines with a spline implies curvature continuity, 
too. 
To require curvature continuity for a high-quality hull 
form representation is in conflict with the limitation of 
tensor-product splines to quadrilateral surfaces. As a 
consequence of this limitation, a hull form is composed of 
several patches, but discontinuities of different order are 
commonly observed on patch boundaries. On the other 
hand, subdivision surfaces allow a curvature continuous 
representation of hull forms. Furthermore, they are closely 
related to tensor-product splines. Essentially, subdivision 
is introduced as a method to generate a tensor-product 
representation of a subdivision surface. Therefore, 
subdivision surfaces are proposed to replace classical 
tensor-product splines for hull form representation. 
The subdivision algorithm presented in this article is 
successfully used to represent the hull form of a modern 
container vessel. However, the focus of this study is the 
quality improvement of hull form representation based on 
subdivision surfaces, but not to provide a general purpose 
subdivision algorithm for hull form design. Future work 
will systematically focus on features the hull form 
representation should provide in order to support hull form 
modeling and how to realize those features based on 
subdivision. 
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